###############################<69.74.qr.info.txt>############################## # # W W V V III # W W V V I # W W V V I # W W V V I # W W W V V I # W W W V V I # W W W V V I # W W V III # #=============================================================================== # # Z = 74, Ne = 69, Ion = 5 # # W VI Tungsten # # 2014-11-13 # # Author: P. Bogdanovich # #=============================================================================== # # Approach used: QR+CI. # Energy operator: Breit-Pauli. # References: [05-3,08-3]. # #=============================================================================== # # INVESTIGATED CONFIGURATIONS: # ground + excited = EVEN ( 2) # 5s2 5p6 5d1 # 5s2 5p6 6s1 # excited = ODD ( 1) # 5s2 5p6 6p1 # # The number of the investigated levels: # EVEN - 3 ODD - 2 # # Closed inner shells [Nd] not listed. # All listed shells were active in the CI approach. # #=============================================================================== # # INFORMATION ABOUT MULTICONFIGURATION APPROACH USED # # RADIAL ORBITAL BASE: # The number of radial orbitals = 49 # QR - quasirelativistic radial orbital [05-4,06-5,07-3] # TRO - transformed radial orbital # for virtual excitations [99-4,08-3] # 1s QR 2s QR 2p QR 3s QR 3p QR # 3d QR 4s QR 4p QR 4d QR 4f QR # 5s QR 5p QR 5d QR 6s QR 6p QR # 7s TRO 7p TRO 7d TRO 7f TRO 7g TRO # 7h TRO 7i TRO 8s TRO 8p TRO 8d TRO # 8f TRO 8g TRO 8h TRO 8i TRO 8k TRO # 9s TRO 9p TRO 9d TRO 9f TRO 9g TRO # 9h TRO 9i TRO 9k TRO 9l TRO 10s TRO # 10p TRO 10d TRO 10f TRO 10g TRO 10h TRO # 10i TRO 10k TRO 10l TRO 10m TRO # #=============================================================================== # # ADMIXED CONFIGURATION SELECTION REZULTS # # Common passive shells: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f # # One-electron virtual excitations {nl->n`l`} were included. # They include Brillouin`s {nl->n`l} excitations. # Paired virtual excitations {nl(2)->n`l`(2)} were included. # Non-paired virtual excitations {nl(2)->n`l` n``l``; nl nl->n`l`(2);...} # were included. # Admixed configurations were selected by their averaged weights Wi. # # # Averaged energy corrections Ei and weights Vi of admixed configurations # were calculated in the second order of perturbation theory [01-2]. # # Averaged weights of admixed configurations were normalized: # Wi=Vi/(1+SUM(Vi)). # #------------------------------------------------------------------------------- # Description of Data #------------------------------------------------------------------------------- # Units Label Explanation #------------------------------------------------------------------------------- # --- NT Total possible number of admixed configurations # a.u. ET Sum of Ei of all admixed configurations # --- WT Sum of Wi of all admixed configurations # --- NS Number of selected admixed configurations # --- w Admixed configurations selection criterion value # a.u. ES Sum of Ei of selected configurations # --- WS Sum of Wi of selected configurations # % E% 100%*ES/ET # % W% 100%*WS/WT # --- Configuration Adjusted configuration #------------------------------------------------------------------------------- # NT ET WT NS w ES WS E% W% Configuration #------------------------------------------------------------------------------- # 915 3.51E-01 6.47E-03 258 1.0E-06 3.48E-01 6.46E-03 99% 100% 5d1 # 725 7.79E-01 3.39E-01 178 2.0E-06 7.74E-01 3.39E-01 99% 100% 6s1 #------------------------------------------------------------------------------- # 835 3.37E-01 6.33E-03 156 3.0E-06 3.29E-01 6.30E-03 98% 100% 6p1 #------------------------------------------------------------------------------- # # The final numbers of selected # admixed configurations [01-2,01-4,05-1,06-2] # EVEN - 362 ODD - 145 # # The total number of terms # (configuration state functions) # of all mixed configurations: # EVEN - 113937 ODD - 36449 # # The used reduced [02-1,04-1] number of terms # (configuration state functions) # of all mixed configurations: # EVEN - 1816 ODD - 411 # # For byte-by-byte description of Energy Level Data see # <69.74.qr.elev.txt> # #=============================================================================== # # Explanation of the Radiative Transition Data # # Electron transitions were calculated # for such types of transitions: # EVEN -> EVEN M1 E2 # ODD -> EVEN E1 M2 E3 # ODD -> ODD M1 E2 # # Number of all calculated transitions 19 # # File <69.74.qr.tran.txt> contains selected transitions # with emission probabilities A > Amax * 1.0E-02 # # Number of selected transitions 8 # # Transitions from each initial level were ordered # in descending probabilities order. # # For byte-by-byte description of Radiative Transition Data see # <69.74.qr.tran.txt> # #=============================================================================== # # Explanation of Electron-impact Excitation Data # # Excitations by electron impact # (plane-wave Born approximation) # were calculated for 4 lowest levels. # # Total number excitations 10: 4 even; 6 odd. # # Order Number of excitations # 0 0 EVEN - EVEN # 2 3 EVEN - EVEN # 4 1 EVEN - EVEN # 1 5 EVEN - ODD # 3 3 EVEN - ODD # 5 0 EVEN - ODD # 0 0 ODD - ODD # 2 1 ODD - ODD # 4 0 ODD - ODD # 6 0 ODD - ODD # # Ionization energy according NIST database is 64.770 eV. # # Excitation calculated for 10 electron energies # Impacting electron energies were specified by the excitation energies # Eel(eV) = Ki * Eex(eV) # Values of Ki coefficients: # 1.100E+00 1.200E+00 1.550E+00 2.000E+00 3.000E+00 # 5.500E+00 1.000E+01 2.000E+01 5.500E+01 1.000E+02 # # For byte-by-byte description of Electron-impact Excitation Data see # <69.74.qr.exxs.txt> - Cross Section Table # <69.74.qr.excs.txt> - Collision Strengths Table # <69.74.qr.info.txt> - Effective Collision Strengths Table # #=============================================================================== # # COMMENTS: # ###############################<69.74.qr.info.txt>##############################